What really lies behind the data 

 Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it. Ok this is an old joke and clearly an exaggeration but big data is not alone in over promising and underdelivering.
Once upon a time management was about managing budgets and people plus possibly but not necessarily buildings and equipment. Information management would be missed off many people’s lists. But now Big Data is the big thing. It’s advocates are evangelical in their enthusiasm for the benefits of bid data, not only does it tell us what we have done in forensic detail but if used correctly it can make us do things better in the future.
It’s the way to greater efficiency, improved performance and  increased competitiveness. Like anything, it can be used for good or  for evil. It can be used appropriately given known limitations, or stretched wantonly until its principles fray. But data is like people – interrogate it hard enough and it will tell you whatever you want to hear. So managing data requires specific skills in the same way that managing budgets and managing people does.
Managing data means being aware of the limitations of data. You’ve hear managers say ,”the numbers don’t lie” but books have been written about how to lie with statistics! That’s why there are three versions of average and why the average can seem quiet reasonable but is hiding some very troubling extremes.
The use of data to produce algorithms intended to be more efficient, more reliable and removing human bias has provided examples of just what can go wrong. In the USA judges were encouraged to use an algorithm to decide both the risk of reoffending and whether to agree bail or remand in custody. The use of the algorithm was supposed to remove the risk of unconscious bias. Research found that rather than reducing the number of African Americans refused bail and given custodial sentences it increased them.
The problem was that the big data and resulting algorithm looked at a very large number of offenders and their characterises, educational achievements, employment status, area in which they lived , parents occupation, whether from a single parent family and a list of other factors that repeat offenders had in common and used this to predict the likelihood of a new offender becoming a repeat offender. Sounds scientific and impartial but of course the algorithm is built on the past unconscious bias decisions of judges.
Closer to home a top university experimented with an algorithm to decide who to offer places to. This was seen as a more efficient way of dealing with the large number of applicants and importantly removing human bias from the selection process. The expectation was that more women and more students from ethnic minority backgrounds would be offer places but this was not the outcome. And for much the same reasons. The data on which the algorithm was based contained the unconscious bias of the previous recruiters.
On a positive note algorithms have been successfully used in sport. Pioneered by an American football coach but now widely adopted in professional football across Europe by clubs to inform their recruitment and transfer decisions.Big data and algorithms are used to uncover some undervalued players who’s contribution to the team had gone unnoticed.
Algorithms are good at probability. The more data the greater the accuracy. My nephew as a student used this knowledge on a number of betting sites and made enough to fund a holiday in an exotic location. Success was however short lived as he found it increasingly difficult to open a new account with a bookmaker. Never the less on graduation he found employment with a national finance organisation largely on the bases of his understanding of the application of big data and algorithms.
It’s important that managers can manage information, in the same way that it’s important that managers are skilled in managing budgets and people.  Managers need to be aware  of the limitations of big data and that as in the case of the US justice system and university admissions if the data is a result of human decisions the algorithm will contain their unconscious bias.

    Read more

    Latest News

    Read More

    Building a wellbeing strategy that supports recruitment and retention

    20 January 2025

    Newsletter

    Receive the latest HR news and strategic content

    Please note, as per the GDPR Legislation, we need to ensure you are ‘Opted In’ to receive updates from ‘theHRDIRECTOR’. We will NEVER sell, rent, share or give away your data to third parties. We only use it to send information about our products and updates within the HR space To see our Privacy Policy – click here

    Latest HR Jobs

    University of Oxford – Humanities DivisionSalary: £55,636 to £64,228 (Grade 9)

    If you are interested in this role, please contact Steve Davies, HR Director –. Management of the HR Metrics service providing HR information, analytics and

    Circa £90’000:London Councils:The HR Director & London Regional Employers’ Secretary manages the regional employers’ organisation to ensure it supports London boroughs by sharin.

    Circa £90’000:London Councils:The HR Director & London Regional Employers’ Secretary manages the regional employers’ organisation to ensure it supports London boroughs by sharin.

    Read the latest digital issue of theHRDIRECTOR for FREE

    Read the latest digital issue of theHRDIRECTOR for FREE